Abstract
Entangling quantum sensors, such as magnetometers or interferometers, can dramatically increase their sensitivity. In this talk, we will discuss how entanglement in a network of quantum sensors can be used to accurately measure one or more properties of spatially varying fields and how to do such measurements with a minimal use of entanglement.
Bio
Alexey Gorshkov received his A.B. and Ph.D. degrees from Harvard in 2004 and 2010, respectively. In 2013, after three years as a Lee A. DuBridge Postdoctoral Scholar at Caltech, he became a staff physicist at NIST. At the same time, he started his own research group at the University of Maryland, where he is a fellow of the Joint Quantum Institute and of the Joint Center for Quantum Information and Computer Science. His theoretical research is at the interface of quantum optics, atomic physics, condensed matter physics, and quantum information science. Applications of his research include quantum computing, quantum communication, and quantum sensing. He is a recipient of the 2022 Optica Fellowship, the 2020 Arthur S. Flemming Award, the 2020 APS Fellowship, the 2019 PECASE, and the 2018 IUPAP Young Scientist Prize in AMO Physics.
